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We use neutron scattering to study the spin and lattice structure of single-crystal SrFe2As2, the parent
compound of the FeAs-based superconductor �Sr,K�Fe2As2. We find that SrFe2As2 exhibits an abrupt struc-
tural phase transition at 220 K, where the structure changes from tetragonal with lattice parameters c�a=b to
orthorhombic with c�a�b. At almost the same temperature, Fe spins develop a collinear antiferromagnetic
structure along the orthorhombic a axis with spin direction parallel to this a axis. These results are consistent
with earlier work on the RFeAsO �R=rare earth� families of materials and on BaFe2As2, and therefore suggest
that static antiferromagnetic order is ubiquitous for the parent compounds of these FeAs-based high-transition
temperature superconductors.
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Understanding the structural, electronic, and magnetic
properties of parent compounds of high-transition tempera-
ture �high-Tc� superconductors is an essential step in devel-
oping a microscopic theory for superconductivity. For
high-Tc copper oxides, the parent compounds are antiferro-
magnetic �AFM� Mott insulators, where the nearest-neighbor
Cu2+ spins in the CuO2 plane arrange themselves
antiferromagnetically.1 In the case of the Fe-As-based
high-Tc superconductors,2–8 while the Fe ions in parent com-
pounds LaFeAsO �Refs. 9 and 10�, CeFeAsO �Ref. 11�,
NdFeAsO �Ref. 12�, and BaFe2As2 �Refs. 13 and 14� are
found to exhibit commensurate static AFM long-range
order, all previous neutron-scattering experiments on these
FeAs-based materials were carried out on polycrystalline
samples.9–14 The small differences in the a /b lattice
constants in the low-temperature orthorhombic structure
of LaFeAsO �Refs. 9 and 10�, CeFeAsO �Ref. 11�, and
NdFeAsO �Ref. 12�, combined with the small ordered mo-
ment that requires coarse resolution for the neutron magnetic
powder-diffraction method, make it difficult to determine the
spin direction and in most cases the AFM ordering wave
vector for the collinear AFM structure.

In this paper, we report single-crystal neutron-scattering
studies of the structural and magnetic phase transitions for
SrFe2As2, the parent compound of the �Sr,K�Fe2As2
superconductors.8,15 Previous transport, 57Fe Mössbauer, and
x-ray diffraction experiments16–18 have shown that SrFe2As2
exhibits structural and magnetic phase transitions at 203 K,
where the crystal structure changes abruptly from tetragonal
�I4 /mmm� to orthorhombic �Fmmm�. Our neutron-scattering
experiments confirm the findings of the x-ray measurements
for the structural transition while we are able to determine
conclusively that the Fe spins in SrFe2As2 order antiferro-
magnetically along the orthorhombic a axis and ferromag-
netically along the b axis, with the moment direction along
the a axis �Figs. 1�a� and 1�b��. These measurements, to-
gether with the recent observation of static long-range AFM
order of the Fe sublattice in PrFeAsO �Refs. 19 and 20�,

suggest that the collinear AFM order shown in Fig. 1�b� is
ubiquitous for the parent compounds of the FeAs-based su-
perconductors.

We use neutron diffraction to study the structural and
magnetic phase transitions in crystals grown using the
method described in Ref. 21. Our experiments were carried
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FIG. 1. �Color online� Crystal and magnetic structures of
SrFe2As2. �a� The three-dimensional AFM structure of Fe in
SrFe2As2 as determined from our neutron-diffraction data. �b� The
in-plane magnetic structure of Fe in the orthorhombic unit cell of
SrFe2As2. The Fe moments are along the a axis, and form an AFM
collinear structure along the a-axis direction and ferromagnetic
along the b-axis direction. The nearest-neighbor Fe spins along the
c axis are antiparallel, identical to that of LaFeAsO �Ref. 9�; J1a,
J1b, and J2 indicate the effective exchange couplings. ��c� and �d��
Radial scans through the magnetic �1,0,1� and �1,0,3� magnetic
Bragg peaks below and above the Néel temperature, showing clear
resolution-limited magnetic peaks.
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out on the conventional triple-axis spectrometer BT-9 at the
NIST Center for Neutron Research, Gaithersburg, Maryland.
The neutron wavelength employed was 2.359 Å using a py-
rolytic graphite �PG� monochromator and PG filter to sup-
press higher-order reflections to achieve a monochromatic
incident beam. The collimations were 40�–47�-S-40�–80�.
We denote positions in momentum space using Q
= �H ,K ,L� in reciprocal-lattice units �r.l.u.� in which Q
�in Å−1�= �H2� /a ,K2� /b ,L2� /c�, where a=5.5695�9�, b
=5.512�1�, and c=12.298�1� Å are lattice parameters in the
orthorhombic state at 150 K. The sample ��5�5
�0.5 mm3, mosaic �0.3°� was mounted on an aluminum
plate and aligned in the �H ,0 ,L� zone inside a sealed alumi-
num container with helium exchange gas, and mounted on
the cold finger of a closed cycle helium refrigerator.

Figures 1�a� and 1�b� summarize our experiments, which
show the Fe spin arrangements with respect to the ortho-
rhombic low-temperature crystal structure. To obtain inte-
grated magnetic intensities necessary for comparison with
magnetic structure factor calculations, we carried out radial
�� :2�� as well as rocking ��� scans for a series of magnetic
�1,0 ,L� and �3,0 ,L� peaks, where L=1,3 ,5 , . . .. Figures
1�c� and 1�d� show scans for the �1,0,1� and �1,0,3� peaks
below and above the AFM ordering temperature. Sharp,
resolution-limited magnetic peaks are observed at 10 K, and
completely disappear at 250 K, consistent with establishment
of long-range AFM order. A detailed investigation of the
low-temperature magnetic Bragg peaks in the �H ,0 ,L� zone
revealed an ordered magnetic structure of Fe ions consistent
with previous results on LaFeAsO �Ref. 9�, CeFeAsO �Ref.
11�, NdFeAsO �Ref. 12�, and BaFe2As2 �Ref. 14�.

In previous x-ray and neutron-diffraction work on
BaFe2As2 and SrFe2As2, it was found that the structural dis-
tortion occurs almost simultaneously with the development
of AFM order.13,14,16–18 To confirm this in our single crystal
of SrFe2As2, we carried out neutron-diffraction measure-
ments focusing on the �2,2 ,0�T nuclear Bragg peak, where T
denotes the high-temperature tetragonal phase. As a function
of decreasing temperature, the �2,2 ,0�T peak abruptly splits
into the �4,0 ,0�O and �0,4 ,0�O Bragg peaks below
220�1 K as shown in Fig. 2. Here the subscript O denotes
orthorhombic symmetry, and the observation of both
�4,0 ,0�O and �0,4 ,0�O peaks indicates that our single crystal
has equally populated twin domains in the orthorhombic
phase. Figure 2�b� compares the structural phase transition
and magnetic order parameter in detail as a function of tem-
perature. It is evident that both structural and magnetic phase
transitions occur abruptly, consistent with a first-order phase
transition. By normalizing magnetic peaks with nuclear
structural peaks using the magnetic structure shown in Figs.
1�a� and 1�b�, we estimate that the ground-state ordered iron
moment is approximately 0.94�4��B at 10 K, where numbers
in parentheses indicate one standard deviation statistical un-
certainty and �B denotes Bohr magneton.

In previous neutron-diffraction work on powder samples
of LaFeAsO �Ref. 9�, CeFeAsO �Ref. 11�, NdFeAsO �Ref.
12�, and BaFe2As2 �Ref. 13�, it was found that the Fe spins
order antiferromagnetically along one axis of the low-
temperature orthorhombic structure and ferromagnetically
along the other axis. However, the actual AFM and ferro-

magnetic ordering directions, as well as the Fe moment di-
rection, were not determined. To determine the direction of
the AFM ordering in SrFe2As2, we carefully probed the
�3,0,3� magnetic Bragg reflection. Figure 3�a� shows a radial
scan for the magnetic scattering, where we only observed a
single �magnetic� peak. Since the orthorhombic crystal struc-
ture of SrFe2As2 has twin domains in the a−b plane below
the structural distortion temperature, one should observe two
separate Bragg peaks along the �H ,0 ,0� direction near
�6,0,6�. Removing the PG filter allows both �6,0,6� and
�0,6,6� orthorhombic nuclear Bragg peaks to be observed via
� /2 in the incident beam at the �3,0,3� and �0,3,3� positions,
respectively. We see that the magnetic peak corresponds to
the smaller diffraction angle, which establishes that the AFM
ordering is along the a axis. A further check is provided in
Fig. 3�b�, where the diffraction angle was set to the higher
angle reflection, and rocking curves were performed, with
and without the PG filter. The only peak observed is the
�0,6,6� nuclear reflection when the filter was removed. This
demonstrates that the only magnetic reflection is the �3,0,3�
peak. Therefore, our experiments conclusively identify the
AFM ordering direction as along the long a-axis direction of
the orthorhombic SrFe2As2 unit cell.

To determine the Fe moment direction, we carried out
integrated intensity measurements for a series of magnetic
Bragg reflections. Group symmetry analysis performed in the
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FIG. 2. �Color online� Structural and magnetic phase transition
as a function of temperature in single-crystal SrFe2As2. �a� Tem-
perature dependence of the �2,2 ,0�T structural peak, showing that it
abruptly splits below 220�1 K. The data were collected using
10�–11�-S-10�–80� collimation. �b� Comparison of structural dis-
tortion and magnetic order parameter, both occurring at essentially
the same temperature. The structural transition is first order, while
the magnetic transition appears to be continuous.
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low-temperature Fmmm phase restricts the moments to be
either along the a, b, or c axis, assuming that the magnetic
transition is second order; if it is first order then there are no
restrictions on the spin direction. However, if the dominant
interactions are determined by Fe-As-Fe exchange, then the
orthorhombic structure dictates that the diagonal exchange J2
in Fig. 1�b� should be the same for both diagonal directions
since the bond angles and distances are identical. Therefore
we expect the Fe spins in SrFe2As2 to point either along the
a axis or along the b axis, and this is indeed the case. As-
suming the Fe spin direction is 	 away from the a axis �inset
of Fig. 4�a��, the least-squares fit of our magnetic structure
factor calculations indicates excellent agreement with a 
2

=3.8 for moment along the a axis �	=4�3°�. Therefore, it
is clear that the moment direction is along a, and the spin
structure is shown in Figs. 1�a� and 1�b�.

Within the localized magnetism picture,22 the collinear
AFM structure can be described in an effective J1−J2−Jz
Heisenberg model,23–25 where J1 and J2 are the AFM ex-
change couplings between the nearest-neighbor and second-
nearest-neighbor Fe atoms, respectively, and Jz is the ex-
change coupling between FeAs layers �Fig. 1�b��. When J1
�2J2, the model has a collinear AFM ground state and also
an Ising nematic ordered state at high temperature which can
couple to the structural transition in the general Ginzburg-
Landau approach. When Jz /J2 is larger than 0.005, the col-
linear magnetic and Ising nematic transition temperatures are
very close.24 In this model, by including the coupling be-
tween the Ising order and the lattice, the structural transition
is expected to happen at the same transition temperature as
that of the collinear magnetic transition, which provides a

good description for the current case in SrFe2As2, where the
interlayer coupling is much larger than that in RFeAsO com-
pounds.

The observed configuration of orthorhombic lattice distor-
tion and the corresponding spin arrangement reveals that the
nearest-neighbor AFM exchange coupling J1 is not a simple
result of a superexchange interaction arising from electron
hopping through the As ion since this requires J1a�J1
�J1b after the lattice distortion in order to save total
energy.23 The fact that the ferromagnetic exchange is along
the short �b� axis of the orthorhombic structure suggests the
presence of a significant direct ferromagnetic exchange cou-
pling. That is, J1=J1

s −J1
d, where J1

s is the superexchange
AFM contribution and J1

d is the ferromagnetic part from di-
rect Fe-Fe exchange.

The small lattice distortion has little effect on the local
onsite energy but can directly change the electron hopping
amplitude. Assume that the high-temperature in-plane tetrag-
onal lattice constant aT is split into orthorhombic a=aT+�
and b=aT−�. Then the change of the distance between Fe
and the nearest-neighbor As is given by the leading order
�2 /4 �Fig. 1�b��. Therefore, the change in the hopping am-
plitude t� after the lattice distortion is 
t���2. Since the
superexchange J1

s � t�4, its change after the lattice distortion
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FIG. 3. �Color online� �a� Rocking curves of the �3,0,3� mag-
netic Bragg peak, and its comparison with structural Bragg peaks
obtained from � /2 of the nuclear �6,0,6� and �0,6,6� reflections. �b�
Identical rocking curve for �0,3,3� magnetic peak position showing
no magnetic scattering. This provides definitive evidence that the
AFM order occurs along the a-axis direction.
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FIG. 4. �Color online� �a� Calculated and observed integrated
magnetic Bragg-peak intensities for Fe spin direction along the a
axis. The agreement is excellent, demonstrating that the moment
direction is along a. 	 is the angle between Fe spin direction and a
axis, which was found to be close to zero for the best fit of the
experimental data. ��b� and �c�� Resolution-limited �H ,0 ,1� and
�1,0 ,L� scans through the �1,0,1� magnetic Bragg peak, indicating
that the order is long range in nature with a minimum correlation
length of 330 Å.
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should be 
J1
s �−�2. This means that the reduction in J1

s is a
second-order effect of the lattice distortion. On the other
hand, since the direct ferromagnetic exchange J1

d is propor-
tional to the hopping amplitude t, the leading-order changes
of J1

d along the a and b axes after the lattice distortion should
be 
J1a

d �−� and 
J1b
d ��, respectively. Therefore, J1 in-

creases along the a axis and decreases along the b axis after
the lattice distortion.

In FeAs-based materials, the AFM order is rapidly sup-
pressed upon doping. This immediately suggests a decrease
in J1a with increasing doping. Since the decrease in J1a
mostly arises from the increase in the direct exchange J1a

d ,
the long �a� axis of the orthorhombic structure is expected to
be suppressed with increasing electron or hole doping. This
phenomenon has indeed been observed in electron-doped
CeFeAsO and LaFeAsO, where the long �a� axis of the
orthorhombic structure is reduced upon doping F while the
short �b� axis is unaffected.11,26

In the itinerant magnetism picture,27–30 the observed anti-
ferromagnetism in the parent compounds of FeAs-based su-
perconductors has a spin-density wave origin arising from a
nested Fermi surface. However, it is unclear why the collin-
ear AFM order should occur along the long a axis of the
orthorhombic structure. In summary, we have determined the
AFM ordering wave vector and spin direction in SrFe2As2,
the parent compound of the �Sr,K�Fe2As2 superconductors.

Our results indicate that the AFM order shown in Fig. 1�b� is
ubiquitous for the parent compounds of FeAs-based super-
conductors. In addition, to obtain a comprehensive under-
standing of the mechanism of superconductivity in these
FeAs-based superconductors, one must consider both the di-
rect exchange and superexchange interactions, and their re-
lationship to lattice distortion effects.

Note Added: Recently we became aware of a neutron
powder diffraction work which also concluded that Fe spins
in SrFe2As2 order antiferromagnetically in the a-axis direc-
tion with ordered moment along the a-axis.31
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